Goto

Collaborating Authors

 Vision


DI-MaskDINO: A Joint Object Detection and Instance Segmentation Model Zhixiong Nan 1

Neural Information Processing Systems

This paper is motivated by an interesting phenomenon: the performance of object detection lags behind that of instance segmentation (i.e., performance imbalance) when investigating the intermediate results from the beginning transformer decoder layer of MaskDINO (i.e., the SOTA model for joint detection and segmentation). This phenomenon inspires us to think about a question: will the performance imbalance at the beginning layer of transformer decoder constrain the upper bound of the final performance?


ColJailBreak: Collaborative Generation and Editing for Jailbreaking Text-to-Image Deep Generation

Neural Information Processing Systems

DALL E) can produce high-quality images based on input language descriptions. These models incorporate a black-box safety filter to prevent the generation of unsafe or unethical content, such as violent, criminal, or hateful imagery. Recent jailbreaking methods generate adversarial prompts capable of bypassing safety filters and producing unsafe content, exposing vulnerabilities in influential commercial models. However, once these adversarial prompts are identified, the safety filter can be updated to prevent the generation of unsafe images. In this work, we propose an effective, simple, and difficult-to-detect jailbreaking solution: generating safe content initially with normal text prompts and then editing the generations to embed unsafe content.


Simulation-Free Training of Neural ODEs on Paired Data

Neural Information Processing Systems

In this work, we investigate a method for simulation-free training of Neural Ordinary Differential Equations (NODEs) for learning deterministic mappings between paired data. Despite the analogy of NODEs as continuous-depth residual networks, their application in typical supervised learning tasks has not been popular, mainly due to the large number of function evaluations required by ODE solvers and numerical instability in gradient estimation. To alleviate this problem, we employ the flow matching framework for simulation-free training of NODEs, which directly regresses the parameterized dynamics function to a predefined target velocity field. Contrary to generative tasks, however, we show that applying flow matching directly between paired data can often lead to an ill-defined flow that breaks the coupling of the data pairs (e.g., due to crossing trajectories). We propose a simple extension that applies flow matching in the embedding space of data pairs, where the embeddings are learned jointly with the dynamic function to ensure the validity of the flow which is also easier to learn. We demonstrate the effectiveness of our method on both regression and classification tasks, where our method outperforms existing NODEs with a significantly lower number of function evaluations.


SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images

Neural Information Processing Systems

Dense 3D object reconstruction from a single image has recently witnessed remarkable advances, but supervising neural networks with ground-truth 3D shapes is impractical due to the laborious process of creating paired image-shape datasets. Recent efforts have turned to learning 3D reconstruction without 3D supervision from RGB images with annotated 2D silhouettes, dramatically reducing the cost and effort of annotation. These techniques, however, remain impractical as they still require multi-view annotations of the same object instance during training. As a result, most experimental efforts to date have been limited to synthetic datasets. In this paper, we address this issue and propose SDF-SRN, an approach that requires only a single view of objects at training time, offering greater utility for real-world scenarios. SDF-SRN learns implicit 3D shape representations to handle arbitrary shape topologies that may exist in the datasets. To this end, we derive a novel differentiable rendering formulation for learning signed distance functions (SDF) from 2D silhouettes. Our method outperforms the state of the art under challenging single-view supervision settings on both synthetic and real-world datasets.


OPEL: Optimal Transport Guided ProcedurE Learning

Neural Information Processing Systems

Procedure learning refers to the task of identifying the key-steps and determining their logical order, given several videos of the same task. For both third-person and first-person (egocentric) videos, state-of-the-art (SOTA) methods aim at finding correspondences across videos in time to accomplish procedure learning. However, to establish temporal relationships within the sequences, these methods often rely on frame-to-frame mapping, or assume monotonic alignment of video pairs, leading to sub-optimal results. To this end, we propose to treat the video frames as samples from an unknown distribution, enabling us to frame their distance calculation as an optimal transport (OT) problem. Notably, the OTbased formulation allows us to relax the previously mentioned assumptions.


SR-CACO-2: A Dataset for Confocal Fluorescence Microscopy Image Super-Resolution Mara KM Whitford 2,3

Neural Information Processing Systems

Confocal fluorescence microscopy is one of the most accessible and widely used imaging techniques for the study of biological processes at the cellular and subcellular levels. Scanning confocal microscopy allows the capture of high-quality images from thick three-dimensional (3D) samples, yet suffers from well-known limitations such as photobleaching and phototoxicity of specimens caused by intense light exposure, which limits its use in some applications, especially for living cells. Cellular damage can be alleviated by changing imaging parameters to reduce light exposure, often at the expense of image quality. Machine/deep learning methods for single-image super-resolution (SISR) can be applied to restore image quality by upscaling lower-resolution (LR) images to produce high-resolution images (HR). These SISR methods have been successfully applied to photo-realistic images due partly to the abundance of publicly available datasets. In contrast, the lack of publicly available data partly limits their application and success in scanning confocal microscopy.


Breaking Semantic Artifacts for Generalized AI-generated Image Detection Chenhao Lin 1 Hang Wang

Neural Information Processing Systems

With the continuous evolution of AI-generated images, the generalized detection of them has become a crucial aspect of AI security. Existing detectors have focused on cross-generator generalization, while it remains unexplored whether these detectors can generalize across different image scenes, e.g., images from different datasets with different semantics. In this paper, we reveal that existing detectors suffer from substantial accuracy drops in such cross-scene generalization. In particular, we attribute their failures to "semantic artifacts" in both real and generated images, to which detectors may overfit. To break such "semantic artifacts", we propose a simple yet effective approach based on conducting an image patch shuffle and then training an end-to-end patch-based classifier. We conduct a comprehensive openworld evaluation on 31 test sets, covering 7 Generative Adversarial Networks, 18 (variants of) Diffusion Models, and another 6 CNN-based generative models. The results demonstrate that our approach outperforms previous approaches by 2.08% (absolute) on average regarding cross-scene detection accuracy. We also notice the superiority of our approach in open-world generalization, with an average accuracy improvement of 10.59% (absolute) across all test sets.


VCT: A Video Compression Transformer Fabian Mentzer George Toderici David Minnen Google Research

Neural Information Processing Systems

We show how transformers can be used to vastly simplify neural video compression. Previous methods have been relying on an increasing number of architectural biases and priors, including motion prediction and warping operations, resulting in complex models. Instead, we independently map input frames to representations and use a transformer to model their dependencies, letting it predict the distribution of future representations given the past. The resulting video compression transformer outperforms previous methods on standard video compression data sets. Experiments on synthetic data show that our model learns to handle complex motion patterns such as panning, blurring and fading purely from data. Our approach is easy to implement, and we release code to facilitate future research.


A Unified Framework for 3D Scene Understanding Wei Xu

Neural Information Processing Systems

We propose UniSeg3D, a unified 3D scene understanding framework that achieves panoptic, semantic, instance, interactive, referring, and open-vocabulary segmentation tasks within a single model. Most previous 3D segmentation approaches are typically tailored to a specific task, limiting their understanding of 3D scenes to a task-specific perspective. In contrast, the proposed method unifies six tasks into unified representations processed by the same Transformer.


Supplementary Material: M M COWS: A Multimodal Dataset for Dairy Cattle Monitoring

Neural Information Processing Systems

This document provides additional details that complement the main paper. We discuss the steps used to synchronize and calibrate the visual data in Section A. Section B elaborates on the details of UWB localization, heading direction estimation, and obtaining the reference for lying behavior. We keep the order of figures, tables, and equations in numerical, and refer to them independently from the main paper unless explicitly stated otherwise. The paper checklist is attached as the final part of the main paper. We discuss additional details of processing the visual data and calibrating four camera views.